抽象代数习题(26) – 多项式函数和根

《抽象代数》第二十六章研究 F[x] 中将 x 代入具体数值,多项式作为函数时的行为。一个重要的结论是多项式的根与因式的关系:\[f(a) = 0 \iff (x-a) \mid f(x)\]这看上去是显然的。

特别地,这一章研究了几个常见的多项式环的可约性问题和求根问题:

  • 给出了整系数多项式可能的有理根,以及在 ℚ 上不可约的 Eisenstein 判据
  • 给出了代数基本定理:不是常数的复系数多项式一定有复数根。进一步可知 ℂ[x] 中的多项式都可以分解为一次式的乘积;ℝ[x] 中的多项式都可以分解为一次式和不可约二次式的乘积。
继续阅读 →

抽象代数习题(25) – 多项式因式分解

《抽象代数》第二十五章研究多项式的因式分解。常见的多项式环 ℚ[x]、ℝ[x] 和 ℂ[x] 都可以放到一般的 F[x] 中研究,其中 F 是域。

和整数类似,域上的多项式也可以做带余除法:a(x) = b(x)q(x) + r(x),其中 r(x)=0 或者 deg r(x) < deg b(x)。因此,F[x] 和整数环 ℤ 有很多类似的性质;它们属于同一类特殊的环,按特殊到一般的顺序列举如下:

  • 可以做带余除法的整环是欧几里得整环 (Euclidean domain),由此可以推出任意理想都由其中次数最小的元素生成,因此是主理想。
  • 理想都是主理想的整环是主理想整环 (Principal ideal domain, PID)。主理想整环中可以推导出 Bézout 引理和欧几里得引理,进一步可以证明唯一分解定理。
  • 唯一分解定理成立的整环是唯一分解整环 (Unique factorization domain, UFD)
继续阅读 →

抽象代数习题(24) – 多项式环

《抽象代数》第二十四章讲的是另一种常见的环:多项式环 (rings of polynomials)。环中的元素即初等代数研究的多项式 \[a(x) = a_0+a_1x+a_2x^2+\cdots+a_nx^n\] 其中,每一项的系数 \(a_i\) 都取自某个环 \(A\)。所有这样构成的多项式形成的环记作 \(A[x]\)。当 \(A\) 是含单位元的交换环(或整环)时,\(A[x]\) 也是含单位元的交换环(或整环);当 \(A\) 是域时,\(A[x]\) 总是可以做多项式除法。

可以从另一个角度看待多项式:向环 \(A\) 中引入新元素,构成一个新环。例如 \(\newcommand\Z{\mathbb Z}\Z[i]=\{a+b\sqrt{-1} : a,b\in\Z\}\) 包含了所有的所谓 Gauss 整数;这是通过向整数环引入虚数单位 \(\sqrt{-1}\) 得到的。

继续阅读 →

抽象代数习题(20) – 整环

《抽象代数》第二十章讲的是一类特殊的环:它满足乘法交换律,含有单位元,并且消去律成立。这样的环称为整环 (integral domain)

整数集合 ℤ 就构成整环。整环的很多性质与整数的性质类似。模素数 p 的环 ℤp 也是有限整环。事实上,它也是域;有限整环都是域。

继续阅读 →

抽象代数习题(19) – 商环

《抽象代数》第十九章讲了环论中的几个概念:

  • 陪集、商环和同态基本定理。它们和群论中的概念都是相对应的,只是额外涉及到了乘法运算。
  • 素理想 (prime ideal) 和极大理想 (maximal ideal)。这些概念在群论的章节中没有讨论过。
继续阅读 →

抽象代数习题(17) – 环

《抽象代数》第十七章讲的是群之后的新代数结构:环 (ring)。基本的环由 2 部分构成:

  • 交换加群(以加法为运算的 Abel 群)
  • 乘法运算(必须满足结合律和分配律)

在此基础上,可以乘法运算叠加一些可选项:交换律、单位元、消去律、逆元。具备所有上述各项的称为域 (field)。

环刻画了一些可以进行计算的对象的性质(例如:整数、矩阵、多项式)。常见的数集 \(\mathbb{Z\subset Q\subset R\subset C}\) 都是环,并且除了 \(\mathbb Z\) 外都是域。此外,\(\mathbb Z_n\) 和模 n 加法/乘法构成含单位元的交换环。因此,可以用环的理论去研究它们。

继续阅读 →

抽象代数习题(16) – 同态基本定理

《抽象代数》第十六章是群论部分的最后一章。这一章讲了同态基本定理 (fundamental homomorphism theorem, FHT)。它把商群和同态两个概念联系起来:由任意正规子群 H 可以构造商群 G/H,从而构造从 G 到 G/H、以 H 为核的同态;反之亦然。

本章习题部分放进了许多补充内容,包括群论中的一些著名定理,如 Cauchy 定理、Sylow 定理等。这部分内容我没有看完,所以先只选做其中较简单的一部分习题。

  • 2022-03-12:补充了 Cauchy 定理和 Sylow 定理的证明。
继续阅读 →

抽象代数习题(15) – 商群

《抽象代数》第十五章讲商群 (quotient group)。当 H 是 G 的正规子群时,H 的所有陪集可以定义乘法运算 Ha·Hb = H(ab),并且构成一个群,这就是商群 G/H。

一个例子是 ℤ/nℤ。它实际上就是(同构意义上)模 n 加法群或 n 阶循环群。这是因为 nℤ 的所有陪集的形式为 nℤ+r,把整数集按模 n 的余数划分为 n 个等价类,并且陪集之间的运算法则和模 n 加法是完全一致的。

继续阅读 →